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Abstract 

This report addresses the problem of data fusion and sensor management based on a 
synergistic use of the information provided by multiple sensors. In the first studied 
case, we deal with the problem of measurement strategy computation for a passive 
receiver. The basic problem is then to compute an optimal policy, during a specified 
observation time interval so that a prediction accuracy is optimized. It is shown that the 
optimal measurement policy can be precomputed before the measurements actually 
occur. The second case descibes research work on the selection of a strategy of 
measurements for an active system and a passive one. The approach is based on 
selecting at each instant of time, a set of measurements provided by one or more 
sensors. Each sensor measurement has an associated cost. The basic problem is then 
to select an optimal measurement policy, during a specified receding horizon 
observation interval, so that a weighted combination of prediction accuracy and 
observation cost is optimized. 

Resume 

Ce rapport adresse le probeme de fusion de donnees et de gestion des capteurs en se 
basant sur la l'utilisation synergique de Pinformation provenant de differents capteurs. 
Dans le premier cas etudie, on aborde le probleme du calcul d'une Strategie de mesures 
pour un capteur passif. Le probleme est alors de calculer une Strategie optimale durant 
un intervalle d'observation donne de facon ä optimiser la precision des estimees. On 
montre qu'une Strategie de mesures peut etre calculee avant de faire les mesures. Le 
deuxieme cas etudie presente une Strategie de selection de mesures pour deux systemes, 
un actif et un passif. L'approche se base sur la selection ä chaque instant, d'un 
ensemble de mesures, provenant de un ou plusieurs capteurs. A chaque mesure est 
associe un coüt. Le probleme est alors de choisir les mesures durant un intervalle 
d'observation fuyant tel qu'une combinaison ponderee de la precision des estimees et 
du coüt d'observation est optimisee. 
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Executive summary 

This report addresses the problem of data fusion and sensor management based on a 
synergistic use of the information provided by multiple sensors.   In the studied cases, 
we formalize a probabilistic framework for information gathering by defining three 
components: geometric models, sensor observation models and models for prior 
information. Geometric models consist mainly of the target model, which describes the 
structure of the rigid body in a certain fixed coordinate system. Sensor models 
mathematically describe the mapping between the rigid body coordinates and the 
statistically corrupted sensor observations. Prior information is encoded in a structured 
environment assumption, as geometric and dynamic models are assumed known. 

Within this framework and using an optimization criterion that relates the task at hand 
to the information gathering process, we show that the performance of a designed 
system depends highly on an interplay between the used sensors and the sensor 
manager. This motivates the development of adaptive strategies for observations. 
These strategies account for the uncertainties in sensors and dynamic models as well as 
the task description. 

For the task of Target Motion Analysis (TMA), the adaptive strategy is based on a 
procedure to choose the sensors actions which yield the best estimation performance 
for a receding observation horizon. We derive and discuss the optimization approach; 
then show how to compute it efficiently, and demonstrate some of its properties through 
two studied cases. The first case is based on the feedback interconnection between two 
dynamical systems: First, a state estimator where the observation equation is a 
nonlinear map between the state variable of the target and the receiving system. This 
mapping depends on some external variables and on the relative position of the sensors 
with respect to the target. Second, a controller of the receiving system with the 
objective of minimizing some function of the covariance of the state estimation error. 

The second case deals with the selection of a strategy of measurements for an active 
system and a passive one. The approach is based on selecting, at each instant of time, a 
set of measurements provided by one or more sensors. Each sensor measurement has 
an associated cost. The basic problem is then to select an optimal measurement policy, 
during a specified receding horizon observation interval, so that a weighted 
combination of prediction accuracy and observation cost is optimized. Numerical 
results for second-order system with active and passive measurements are presented. 

Kaouthar Benameur. 2002. Data fusion and sensor management. DREO TR 2001 146. 
Defence Research Establishment Ottawa. 
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Sommaire 

Ce rapport aborde le probleme de la definition de strategies de mesures de plusieurs 
capteurs dont I'objectif principal est la determination du mouvement d'une cible dans 
un environnement donne. Une des contributions de ce rapport est Pintroduction des 
mecanismes adaptatifs au sein de la fusion de donnees. Ces mecanismes adaptatifs 
touchent le nombre de capteurs utilises, Ieurs types, ainsi que les parametres externes 
de chaque capteur selectionne: sa position et sa sa trajectoire. Pour analyser le 
mouvement d'une cible, la Strategie adaptative est basee sur les choix du capteur et de 
son action qui permettent la meilleure performance d'estimation sur un intervalle 
d'observation fuyant. 

Dans ce rapport, le premier cas etudie, se base sur 1'inter-connection en feedback de 
deux systemes dynamiques: Premierement, Pestimateur d'etat ou l'equation 
d'observation est nonlineaire et presente la projection du vecteur d'etat dans Pespace 
mesures. Cette equation est une fonction du vecteur d'etat et de la position relative du 
capteur par rapport ä la cible. Deuxiemement, le controlleur du capteur dont Pobjectif 
est la minimization d'une fonction de la covariance de Perreur sur les estimees. Le 
deuxieme cas etudie aborde la selection d'une Strategie de mesures pour deux systemes, 
Pun actif et Pautre passif. L'approche est basee sur la selection, ä chaque instant, d'un 
ensemble de mesures provenant d'un ou plusieurs capteurs. Le probleme de base est 
alors de choisir une Strategie de mesures optimale sur un intervalle d'observation fuyant 
qui permet d'optimiser la precision de la prediction de Petat de la cible et de minimiser 
le coüt de Pobservation. Les resultats numeriques sont presentes dans le cas d'un 
Systeme de second ordre avec des mesures actives et passives. 

Kaouthar Benameur. 2002. Data fusion and sensor management. DREO TR 2001 146. Centre 
de recherches pour la defense Ottawa. 
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1.    Introduction 

The world is becoming increasingly information-centric and often systems are 
overwhelmed by the amount of the data, giving rise to the problem of "information 
overload". Therefore, the need exists to develop cost-effective multi-source 
information systems that require adaptive methods for specifying data fusion 
processing and control functions, and associated data bases. 

These main issues in sensor data fusion have mostly been addressed separately, 
sometimes based on well-founded theories and sometimes in an ad hoc manner and in 
the context of specific systems and architectures. Data fusion as defined in this report, 
refers to the "synergistic use of the information provided by multiple sensory devices 
to assist in the accomplishment of a task by a system"[l]. Sensor synergy can be 
described as the organization, coordination and management of sensors and the 
combination of the information they provide such that their overall operation is 
complementary and non-conflicting given the sensing needs of the system. This 
synergistic operation between sensors has also been termed sensor management, sensor 
coordination and sensor planning and control [7]. 

1.1    Resource Management and adaptive data fusion 

Different sensors may have the capability to measure different features of 
the same target. For example, a radar has range, range rate, and moderate angle 
measurements capabilities, while an ESM, or IRST, has angle measurement 
capabilities. Differences in sensor ID measuring capabilities are also prevalent. The 
goal of data fusion is to combine the varied sensor data to achieve a better overall 
picture of the environment.   In this process, resource management, constrained here to 
the sensors, plays the essential role of coordinating the data collection processes of the 
various sensors to support the overall goal. Thus, for example, resource management 
may respond to a tactical need for a more precise ID or more range accuracy by cueing 
the radar to support a track that was primarily maintained by the ESM.   Sensor 
management is therefore an optimization of the measurement process to achieve an 
overall goal. 

This natural coupling between data fusion and resource management is recognized in 
the literature [27].   Resource management is a key element of the data fusion process 
where it is essential that these sensors operate synergistically. Resource management 
in a multisensor system must operate so that full advantage is taken of the strengths of 
each sensor. Sensor management can accomplish the coordination between sensors 
through cooperative reinforcement, emission control, sensor cueing, situation 
assessment, and adaptive behavior in varying sensing environments where the ability of 
a sensor to collect information can be strongly influenced by the environmental 
conditions. These conditions can include weather, electronic countermeasures, 
clutter,...etc. In emission control, we consider two basic sensor categories: (1) passive 
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and (2) active. Passive sensors collect information on elements in the environment by 
measuring energy which the targets emit or which reflects off them from sources in the 
environment other than the sensor itself. Thus, passive sensors can covertly collect 
information about an element in the environment. Active sensors on the other hand 
actively emit a signal in an attempt to reflect it off an element in the environment. 
Unfortunately, it is generally true that active sensors can provide more information than 
passive sensors. Therefore, in a covert operation, there is a significant advantage in 
minimizing the use of active sensors. Sensor cueing may improve the response time of 
a sensor by cueing it with information derived from another sensor. In this report, we 
consider a radar as an active sensor measuring the range and the angle and an ESM as a 
passive sensor. It generally measures only angle. Because the operation of the radar 
betrays the presence of ownship, sensor management should attempt to synergistically 
employ the radar and the ESM so as to minimize active radar radiation and optimize the 
quality of the track. 

Steinberg [28] gave the following more general definition to resource management: A 
resource management process is one that combines multiple available actions over time 
to maximize some objective function. Such a process must contend with uncertainty in 
the current situational state and in the predictive consequences of any candidate action. 
A resource management process will: 

• develop candidate response plans to estimated world states; 

• estimate the effects of candidate actions on mission objectives; 

• identify conflicts for resource use; and 

• resolve conflicts based on the estimated impact on mission attainment. 

Coordination across multiple sensors has been the focus of many research activities 
mainly in the multitarget/multisensor tracking context where a recent trend is the 
availability of multiple sensing modalities that differ in such crucial measures as 
detection, estimation, geographical coverage and cost of operation. Considering a target 
tracking and identification system, sensor management attempts to achieve the overall 
system optimization by checking target tracking and identification performance relative 
to certain criteria and generating a feedback control signal to the sensors. Nash 
recognized that the Kaiman filter covariance matrix ( or equivalently the information 
matrix) is one primary measure of a tracking system's current information state. 
References present Kaiman filter-based sensor allocation methods.   It is interesting to 
note that in the literature, we find two views about what needs to be managed in 
managing sensors: The parameter view of managing sensors requires the sensor 
manager to directly control each degree of freedom of the sensor. The mode view 
greatly simplifies the sensor management decision making. This simplification is a 
natural consequence of mode design. In a non-sensor-managed system, modes are 
simply a careful trade over the degrees of freedom which optimize a priori performance 
criteria. 
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Figure 1: Integrated data fusion/resource management tree (Steinberg 1998) 

Adaptive data fusion is an important avenue of research by which the selection of data 
to be processed and of the processing techniques to be applied is determined by a 
system's resource management process during run-time. Referring to Steinberg's data 
fusion processing diagram, when the data fusion process is pardoned into multiple 
processing nodes, and the process is represented via a data fusion tree as illustrated in 
figure 1 then the data fusion tree and nodes are constructed adaptively, based on the 
system 's assessed current information state and the predicted effectiveness of available 
techniques to move to a desired information state. Significant work in this area was 
conducted under the US DARPA Dynamic Multi-User Information Fusion (DMIF) 
project. Data Fusion Engineering Guidelines that were developed in this project 
recommend an architecture concept that represents data fusion systems as networks of 
processing nodes, each node having the structure shown in figure 2. 

Figure 3 shows the concept of adaptive data fusion as defined by Steinberg. In his 
definition, he extended the concept of adaptive sensor fusion to include the coordinated 
use of sensors, communications, processing, and response systems (weapons, 
countermeasures).   Traditional data fusion involves the feed-back loop where estimates 
of the observed situation are used along with prior models to interpret new data. 

The adaptive sensor fusion concept as defined by Steinberg includes two more feedback 
loops: resources are allocated based on the current estimated state and the desired state. 
Additionally, the system refines its library of models, target and background models as 
well as models of resource performance as their performance is assessed in mission ( 
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Figure 2: Data fusion processing node (Steinberg 1998) 

figure 3). 

An adaptive data fusion system will characterize off-normal measurements in terms of 
four components: 

1. Random process noise affecting the observations of an individual target entity 

2. Random process noise affecting entire classes of entities; e.g., random behavioral 
or design variability 

3. Deterministic change in the individual target entity; for example a manoeuvre, a 
signature change (due to a damage or a temperature change), and 

4. Deterministic change affecting entire classes of entities (doctrinal or design 
changes). 

The problem of resource allocation has a long history mainly with radar. In the 
scheduling of radar resources, the radar sensor manager, considered as an autonomous 
system till recently, has to determine a set of task priorities based on the radar track file 
and the internal radar information. The major task categories are (1) update and target 
identification for existing tracks, and (2) search for new targets. Considering an agile 
beam radar, three interrelated parameter choices are involved in the efficient update of 
existing target tracks. The first is the choice of revisit time, which is directly related to 
the track prediction error relative to the radar beamwidth. Second, once a track update 
is allocated, the SNR, which is directly proportional to Time On Target (TOT), must be 
chosen. Finally, the detection threshold, with resulting PFA, must be chosen. A 
modern efficient allocation algorithm must direct the agile beam radar among the 
options to search for new targets or to update the existing tracks or to remain covert. 
This decision is based on many factors but basically is mission dependent. Thus, the 
basic issue in the design of a scheduling algorithm is the manner in which these 
alternative tasks are assigned Figures of Merit (FOM). The two basic methods that 
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Figure 3: Adaptive information exploitation (Steinberg 1998) 

have been proposed for determining FOM are through the utility theory and expert 
system approaches. 

Several FOM are used in the design and performance evaluation of sensor managers 
[5]. These FOM are chosen as a function of the task at hand: 

• Target acquisition FOM: the two basic types of target acquisition performance 
metrics are instantaneous and cumulative. The instantaneous metrics measure the 
ability of a sensor system to recognize the existence of a target during a predefined 
short period of time. This metric can be defined as the probability of detection as a 
function of range. A common FOM is the range at which a target will be detected 
on 50% of the trials. The cumulative metrics describe a sensor's ability to 
recognize the existence of a target during the course of a predefined engagement 
geometry. These metrics measure the range by which the sensor system has a fixed 
probability of detecting the target. These metrics only have meaning in terms of a 
specified target geometry. 

• Track acquisition FOM: One typical FOM which is reminiscent of the acquisition 
FOM is the range at at which the target has a 90% probability of confirmed 
track.Other important metrics are based on the sequential probability ratio test. 

• Kinematic accuracy FOM: The primary kinematic accuracy FOM is the standard 
deviation of the tracking error. The calculation of this FOM is part of the 
estimation process. 
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• Track purity FOM: typical FOM are probability of correct association, probability 
of correct decision, and generalized covariance analysis. 

• Weapon control FOM: They are dependent on the weapon specifications. 

• ID ambiguity FOM: ID ambiguity FOM are the attribute fusion counterpart to 
covariances for kinematic fusion. 

Covariance matrix of the track filter has been conveniently used as a criteria for the 
optimization of measurements scheduling. LeCadre [10]considered different norms of 
the Fisher information matrix . In his research, he analyzed performance for optimal 
scheduling of the multiple estimation modes for a non-linear system with a focus on 
non-linear effects in Target Motion Analysis (TMA) and global optimization. Expected 
discrimination gain has been considered as a criteria for this optimization problem 
mainly by Kastella [18], and Nimier [15]. This criteria is a measure of sensor 
effectiveness that has been used in a wide variety of model applications including 
multisensor/multitarget assignment problems, minimizing error correlation between 
close targets, and single and multisensor detection/classification problems. 
Discrimination is related to the notions of information and entropy in probability 
distributions.- It measures the relative increase in information between two probability 
distributions. 

However, before defining an FOM for the design and performance evaluation of 
managed sensors, there is a need to identify what is manageable i.e. parameters to vary 
to optimize some FOM. The application of sensor management involves the selection 
of the sensors and of all parameters that define the operation of each sensor. The 
multi-function radar is perhaps the sensor with the most degrees of freedom.   Full 
management of this sensor includes general command categories of where to point, 
how to scan, waveform to transmit, and processing directives. Each of these command 
categories is specified by a number of parameters. For example the waveform selection 
involves frequency, PRF, length of coherent integration, and total time on target. In 
light of the complexity issue and the trade off between the parameters, we will explore 
a sensor management design that does not attempt to trade over very detailed 
parameters of sensor operation. Nevertheless, this research presents two 
comprehensive management cases where the benefits of fusion and management are 
evident. In the first case, we consider that the position of the passive sensor as a 
manageable parameter. In the second case, we consider a coordination problem 
between a passive sensor and an active one. 

This report is organized as follows. After the introduction which provided an overview 
of the connections between data fusion, resource management, and adaptive data 
fusion, section 2 provides a detailed description of an optimization approach in 
computing the position of a passive sensor. Our objective is to estimate the kinematics 
of an emitting source. In section 3, the optimization problem is one of assigning 
sensors to a target in such a way that the error of the track prediction is minimized. This 
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section presents details on the optimization scheme used to compute the optimum 
assignment of sensors to target. Section 4 presents some suggestions for further work 

2.    Optimal ESM location for emitter tracking  

The basic problem of Target Motion Analysis is to estimate the trajectory of an emitting 
source from noise corrupted sensor data. Suitable data are, in principle, all 
measurements which are functions of the target space. A particular interesting case 
arises when all measurements are derived from a single moving observer. Although a 
variety of techniques are available, a particular good method relies on using 
Doppler-shifted frequency measurements in addition to bearing measurements. This 
method was described and analyzed in a two-dimensional spatial setting by Becker[22], 
and in a three-dimensional setting by Fowler [23]. It was shown that the combined 
measurements produced significantly better locations due to the synergy gained from 
the non-alignment of the frequency and bearing error ellipses. In this work the bearing 
angles and the Doppler-shifted emitter frequency are considered. 

Tracking the source target based on measurements collected by a fixed or a moving 
observer is a classical problem in the field of nonlinear estimation. In the tracking 
problem from angle and frequency measurements, an observer maneuver is necessary 
to ensure the observability of the emitter (uniqueness of the solution). However even 
with the observability requirement fulfilled, measurements are always corrupted by 
errors and the accuracy of the estimates may strongly depend on the maneuver of the 
observer. In this study we consider the information gathering as a dynamic process that 
responds to more than the tracking condition. In fact, in the proposed approach we try 
to integrate and coordinate between tracking and an accuracy criterion deduced from 
the Fisher Information Matrix (FIM) by considering the objective of minimizing some 
function of the covariance of the predicted state vector. In the proposed approach, the 
effect of measurements uncertainties are indirectly incorporated in the cost function. 

Our problem presents some similarities to the localization problem. However, our main 
objective is the determination of the whole source trajectory instead of its detection at a 
fixed final time. To compensate for this intrinsic difficulty, we assume that the source is 
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already detected and we have measurements of its bearing and Doppler-shift frequency. 
It follows that the function to maximize is not the probability of detection during a 
given time, but the information relative to the source trajectory which can be infered 
from the measurements and the observer trajectory. This information is mainly 
dependent on the observer trajectory. 

2.1    Problem Formulation 

To establish a dynamic model for the target motion, the following assumption is made 
in advance: our purpose is to estimate, rather than regulate, the target motion, so the 
resulting model is not necessarily controllable. The dynamic model for the target is 
assumed to be 

CD m = f(x(t))+t(t)   z(o) = x0 

It is a time varying system describing the position and the motion of the object in an 
inertial frame as well as the transmitted frequency, treated as an additional state 
variable. We assume that the system state vector x(t) is an n dimensional column 
vector. The system driving noise f (i) is assumed to be a Gaussian white noise JV(0, Q) 
with zero mean and a fixed covariance matrix. The initial state vector XQ is modelled as 
a random vector with known mean, XQ, and known covariance PQ. The dynamic model 
of the target motion may be as simple as x{t) = Ax(t) + £(t) where A is known and as 
complex as a model for a ballistic missile. 

The receiver model combines 31? geometric models of the scene with the laws of 
electromagnetic waves in order to describe the position of the target as a function of 
spatial positions and orientations of the target and of the receiver in an inertial frame in 
addition to describing the Doppler shift of the emitter frequency due to the relative 
motion between the sensor and the emitter. 

The transformation between the inertial frame and the sensor frame induces nonlinear 
equations. The size of the measurements vector depends on the number of targets in 
view. For simplicity, we assume one source target in the field of view of the observer, 
the vector of measurement equations for the target can be written as: 

(2) y(t) = h(x(t),iPr)+v(t) 

lPr defines the state vector of the sensor,! imited in the case of a constant speed observer 
to the position of the observer in an inertial frame. i/(t) is the measurements noise, 
defined as a Gaussian white noise with zero mean and constant, positive definite, 
covariance R(t). In this study, we consider that the purpose of the sensor observations 
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during the time interval to < t < T, is the estimation of the source trajectory and 
frequency. With the above assumptions and notations, the estimation will be carried out 
within the framework of Bayesian decision theory. Considering this probabilistic 
description of our estimate is particularly useful in the context of an active sensor. In 
such a system, new information is continually being acquired due to either observer or 
target motion or both, and estimates are continually being updated. A useful formalism 
for modelling such a system is the Kaiman filter. One of the most compelling 
arguments for using a Bayesian framework is its mathematical clarity and elegance. 
Furthermore we believe that: 

• 

• 

• 

In the situations we are considering, some prior information is available. 

We have a well justified basis for the chosen performance criteria. 

It defines a powerful tool to maximize the speed of convergence of the estimates to 
true values by application of advance knowledge. 

For this and because of the nonlinearities of the models, we consider an extended 
Kaiman filter to derive the estimates. The basic idea of the extended Kaiman filter [24] 
is to relinearize the sensor and dynamic models about each predicted estimate once it 
has been computed. As soon as a new state estimate is made, a new and better reference 
state trajectory is incorporated into the estimation process. Thus allowing the validity 
of the assumption that deviations from the nominal trajectory are small enough to allow 
linear perturbation techniques. Under the assumption of continuous time process and 
continuous time measurements: 

• The continuous nonlinear system dynamics are 

(3) x(t) = f(x(t))+£(t) 

where 

(4) E{Z(t)} = 0 

(5) E{amT(t')}= Q6(t-t') 
(6) E{x{t0)} = xo 

(7) E{(x(t0) - xo)(x(t0) - x0)
T} = Po 

(8) E{(x(t0)-xQ)ZT(t)}= 0 

• The continuous nonlinear measurement system is 

(9) y(t) = h(x(t),-?Pr) + v(t) 

where 

(10) E{u(t)} = 0 

(11) E{v{t)vT{t')} = R(t)6(t - 0 

(12) E{{x{t0)-x0)u
T{t)}= 0 

(13) £{£(t)i/T(0} = 0 
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The extended Kaiman filter cycle is given by the following equations [6] 

Hi) =   Km) + PHlxiPrfR-'itMt) - h(x{t)tPr)\ 
(14) P = F[x]P + PF[xf + Q- PH[x;Pr)

TR-l{t)H[x;Pr]P 

where 
(15) Fix] =   aA*W) 

ox x=x(t) 

and 
(16) H[x,iPr]=   nWh'Pr) 

x=x(t) 

In this continuous time linearization, P(t) cannot be precalculated as it can if we 
linearize with respect to a nominal trajectory. It has to be calculated in real time, since 
it is coupled to the current estimate x(t) through the linearization procedure. 

It is clear from equations 9 and 16 that the measurement vector and the measurement 
Jacobian both depend on the position of the observer in the inertia! frame. Therefore we 
can depict two situations 

• The observer position is a function of time known a priori (including a constant). 
This is the "classical" case to which an extended Kaiman filtering is applied. 

• The observer position in the inertial frame is not known a priori but can be varied 
through some dynamics. This case is "non-classical", because the observation can 
itself be controlled. 

The location of the measurement device is then to be governed by the task: what 
information are we seeking? This point of view implies the definition of a criterion that 
reflects our objective from the gathering process. Obtaining the frequency, the position 
and the velocity of the target with minimum error, suggests a criteria function that 
depends on the FIM matrix or the state error covariance matrix P{t). The covariance 
matrix P(t) provides a measure for the amount of uncertainty in the estimate of the 
state variables. 

In order to optimize the estimation process, we define as optimization criteria the 
weighted trace of the state error covariance matrix. It follows that considering an 
observation time interval (horizon) [£, t + T) such that as t advances so does the 
horizon, our objective is then to minimize 

(17) Rwtr{P{t + T)) = RwE{{x{t + T)-x{t + T))T{x{t + T)-x{t + T))} 

where x(t + T) presents the true state of the object at time t + T and x(t + T) the 
estimated one. Note that the smaller tr(P(t + T)) the more accurate is the estimation. 

Obviously, the behavior of the sensor system is then entirely governed by the 
optimization function, and by the information available to the system through the 
dynamics of the object. 
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2.2   Observation policy 

The definition of an optimal observation policy during the time interval [£, t + T] is 
based on the fact that the measurement equations are explicit functions of the receiver 
position. Hence, the quality of the measurements, consequently the estimates, depends 
on the relative location of the sensor with respect to the object. More precisely, to 
maximize the information content of the observations, we may vary the receiver 
position. The moving horizon approach was originally formulated as a method of 
stabilizing time varying systems, without requiring information about the system model 
over all future time, by minimizing a cost function up to some finite horizon ahead at 
each instant. The resulting controller defined on the interval [t, t + T] is only actually 
used for a time interval [i, t + tu) where tu < T before being recalculated [25]. 

In this study, we consider a receding horizon observation strategy with an optimization 
on each observation interval. We define the update time as the time to initiate a new 
computation of the control strategy after a certain number of measurements. The 
current measurement history is used in control strategy computation for a defined 
observation horizon. The advantage of this procedure in deriving the observation 
strategy is that we can deal with short term variation of the system, mainly due to the 
target manoeuver error covariance matrix. The moving horizon approach can then be 
viewed as a good compromise since in the extended Kaiman filter the error covariance 
matrix cannot be accurately precomputed because it is coupled to the estimation 
equation and an approximation on a short observation time interval is needed. 

Therefore, given the derived equations of the extended Kaiman filter, and given the 
dynamics of the receiver 

(18) xr(t) = Vsin(u) 

(19) yT{t) = Vcos(u) 

V defines the constant speed of the sensor. It is evident that the state vector 
[ xr(t)    ijr(t) ] presents the dynamics of *Pr. Obviously no command u(t) can be 
calculated to minimize the previous cost function because of the properties of the 
solution to the Riccati equation P(t) defined with respect to the estimate. Thus one 
approximation is to derive the extended Kaiman filter with respect to a nominal 
trajectory which still allow to take into account the disturbances that will occur in the 
future. 

This approach consists of the linearization of the system with respect to some nominal 
trajectory [12]. This nominal trajectory is defined as the predicted trajectory. The 
problem is then to find the command u(t) that minimize the following cost function, 

(20) J= JRwtr(PB(t + r)) 
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where Pn(t + T) is the solution of the Riccati equation derived with respect to the 
nominal predicted trajectory. This trajectory is defined considering the prediction of the 
state vector x(t). 

Given the previous equations, we can see that for a given observation approach, we 
have a defined estimation error covariance matrix Pn(t) solution of the Riccati 
differential equation and a corresponding value of the cost function. Hence, we can 
transform the optimization problem to a deterministic control problem [2]. 

2.3   Sub-optimal observation policy 

Given the deterministic, Riccati differential equation[6] 

P„(«)=F[xn(0]P„W+P„(Oirrkn(0]+Q-^n(0^r[^W/^r]Ä-HO^Nn(t),iPr]Pn(*) 
(21) 
where H[xn(t), :l Pr] is the Jacobian of the observation equations generated along the 
nominal predicted trajectory. This trajectory is defined considering the prediction of the 
state vector x(t). To find the optimal u(t) such that the cost function (equation 20) is 
minimized and since the accuracy criteria does not include any integration, we form the 
following Hamiltonian function 

(22) Hh = Rwtr(Pn(t)Cp(t)
T) + Cxxr{t) + Cyyr{t) 

where Cp defines the costate matrix and [ Cx   Cy ] the costate vector. The costates 
satisfy the following equations, 

Cp(t) = - dHh 

dPn(t) 

= -F[xn{t)\TCp{t) - Cp(t)F[xn(t)} 

Cp(t)P^(t)HT[xn(t),iPr}R-\t)H[xn(t);Pr} + 

HT[xn{t):Pr]R-l{t)H[xn{t):Pr}P{t)Cp{t) 

Cx{t) = ~8xW) 

(23)        *« " -2£5> 
and the boundary conditions: 

• At t = t: Pn(t) = Pt, Xn(t) = Xt, Xr(t) = XrO, Vr(t) = VrO 

• Att = t + T: Cp(t + T) = Rwl, Cx{t + T) = 0 and Cy{t + T) = 0 

The equations, stated above, that define the properties of the optimal observation 
strategy present a nonlinear two point boundary value problem where it is hard to find 
other than a numerical solution. Since we have nonlinear matrix differential equations, 
we use a variable metric technique [26] to solve the problem. 
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Figure 4: Emitter rectilignar trajectory 

2.4   Simulations 

The theory is verified by performing a number of simulations. The following scenario 
has been used to illustrate the behavior of the optimization approach and to display the 
measurement strategy of the optimal observer. 

1. The receiver, initially located at (0,0)m in the inertial frame, moves with a 
constant velocity equal to 3m/s and a course u(t) that has to be determined. 

2. The target is initially located at (0.5,10)km in the inertial frame. Different 
dynamics are considered in these simulations, mainly a constant speed 5m/s 
rectilinear trajectory as well as a trajectory where the target is maneuvering. 

The receding horizon interval is considered constant except in figure 8 where the 
performances of the optimization approach are tested as functions of the observation 
interval. Target bearing and Doppler-shift frequency are measured every 0.5 seconds. 
We assume a known constant emitted frequency, / = 3GHz. The measurement vector 
y at time t{ is required to depend on the states according to the measurement equations: 

(24) yi = arctan 
yAU) - y{U) 
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V2=  /{1 + 
Cy/(Xr(U)-x{U))2 + (yr(U)-V(ti))2 

{Vsm(u(ti)) - Vx)(xr(U) - x(U)) + 

(25) (Vcos(u(U)) -Vy)(yr(U) -y(U))]} 

The simulation results are presented in figures 4, 5, 6, 7, and 8. Figures 4 and 5 show 
the trajectories of the emitter and the receiver in the inertial frame. It is clear from the 
results that the receiver is maneuvering more when the emitter is following a rectilinear 
trajectory and vice versa. This kind of maneuver is closely related to the convergence of 
the filter by not allowing it to close up very fast, consequently allowing to the state 
estimates to converge to the real values. Figure 6 shows the errors in the estimates. In 
this figure, we also present the results obtained in the case where we measure only the 
bearing angle with a controlled receiver position. It is evident from the results that 
considering both the bearing angle and the Doppler-shift frequency outperform the 
bearing measurement approach. It is important to note here that in the initialization of 
the optimization process, we did not resort to defining different legs for the course of 
the receiver [19], depending on the expected dynamics of the source, which make the 
proposed optimization approach more straightforward to use. Figure 7 presents the 
trajectories of the receiver for both bearing only measurements and bearing and 
Doppler-shift frequency measurements. It is clear that for the same emitter dynamics, 
the receiver has to maneuver in the bearing only scenario. Adding the Doppler-shift 
frequency to the measurement vector allows a smoother trajectory for the receiver and a 
better quality of the estimates. Figure 8 presents the effects of varying the receding 
horizon interval on the quality of the estimates, we limit the plots to the estimation error 
in the y direction. It is evident that the length of the interval influence the accuracy of 
the estimates. The choice of this interval is mainly governed by the dynamics of the 
target and the seeked accuracy of the estimates. 

Simulations suggest that the measurement technique presents satisfactory results for the 
specification of the optimal measurement strategy. Even though we use a suboptimal 
approach and we linearize with respect to a predicted nominal trajectory given the fact 
that when using an extended Kaiman the covariance matrix is coupled to the estimation 
equation, the proposed technique allows for the tracking of an object with only a 
predicted motion. 

3.    Determination of active and passive measurements 

strategies   

Many tracking systems involve basically active and passive subsystems. However there 
are also physical constraints such as field of view, environment, cost and risk of the 
operation that impose the requirement that, at each instant of time, a subset of the set of 
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sensors is used. In such cases, one has to make a decision: which measurements to 
make at present, and when to make alternate measurements. The problem of 
measurement scheduling has a long history [9, 3, 11]. Most of these studies were 
limited to linear stochastic systems. In recent years, somewhat related problems have 
been studied [4, 13]. In these studies, the radar allocation logic was presented and 
different parameters have been used. In this study, we consider an extension of [3] to a 
nonlinear system where an alternate observation policy is presented. 

3.1    Problem Formulation 

To establish a dynamic model for the target motion, the following assumption is made 
in advance: our purpose is to estimate, rather than regulate, the target motion, so the 
resulting model is not necessarily controllable. 

3.1.1     Target dynamics 

The dynamic model for the target is assumed to be: 

(26) x(t) = f(x{t))+S(t)       x(0) = x0 

It is a time varying system describing the position and the motion of the object 
in an inertial frame. We assume that the system state vector x(t) is an n 
dimensional column vector. The system driving noise £(t) is assumed to be a 
Gaussian white noise N(0, Q) with zero mean and a fixed covariance matrix. 
The initial state vector x0 is modelled as a random vector with known mean, 
XQ, and known covariance PQ. The dynamic model of the target motion may 
be as simple as x(t) = Ax(t) + £(<), where A is known, and as complex as a 
model for a ballistic missile. 

3.1.2     Sensor constraints 

Assuming that we have M basic sensors SI„..SM numbered from 1 to M. The 
pseudo sensors, comprised of the combinations of the basic sensors, can be 
numbered from M + 1 up to 2M - 1 [18]. We shall let yj(t) denote the 
measurement vector obtained from the j - th sensor, at time t The size of the 
measurements vector depends on the number of basic sensors used and the 
number of targets in view. For simplicity, we assume one source target in the 
field of view of the observer. The vector of measurements Zj(t) is a variable 
dimension vector given by: 

M Zj(t)=Vj(t)+i'j(t),j = 1,2,...2 
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Vj(t) is the measurements noise. For simplicity we assume that the basic 
sensors measurements noises are indepedent, Gaussian white noises with zero 
means and constant, known, positive definite, covariance matrices R. It 
follows that the pseudo sensor measurement noise is also a Gaussian white 
signal i/j(t)(0, Rj). We assume that each noise process is independent of xo 
and £(i) for all t > t0, all;' = 1,2,..., 2M - 1. At each instant of time t, we 
are constrained in looking at only the output of a sensor j, a basic sensor or a 
pseudo sensor but we are able, considering certain constraints to switch from 
one sensor to another. A convenient way of modelling this sensor selector [3] 
is to define 2M — 1 time functions, denoted by 

(27) vi(t),...,Vj(t),...,v2M-i(t) 

with the following properties 

• at each instant of time Vj(t) can have the value 0 or 1 

• if Vj(t) = 1 then vk(t) = 0fork = l,...,j-l,j + l,...,2M-l. 

The measurement vector at instant t can then be written as 

(28) '   z(t) =v1(t)z1(t)+v2(t)z2(t) + ... + v2M_l(t)z2M_1(t) 

with dim(z(t)) = dim(zj{t)) when Vj(t) = 1 

3.1.3     Observations cost 

We can associate an observation cost to each one of the sensor. Such a cost 
can be used to reflect that special basic sensors may be required to carry out a 
specific observation or special time requirements are considered in making 
observations. For this reason, we assume that there is an inherent cost that 
must be taken into account in order to arrive at an optimal measurement 
policy. We denote by qj(i) the per-unit-of time cost of making the 
measurement Zj(t) at time t. Since one is limited to a specific sensor at each 
instant of time, then one can associate with each observation policy a total 
cost q(v) defined by 

(29) q(v) =  f 
•I to 

rT ~1M -\ 

f J2 fc(*)";(*) 
to j=i 

dt 

q(v) represents the total observation cost associated with the use of the 
observation strategy in the time interval [t, t + T) 

The definition of an optimal observation strategy cannot be based only on the 
observation cost. Assuming that the purpose of the measurements is a TMA 
defined by the prediction of the target dynamics, intuitively, one would expect 
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that the accuracy of any prediction will depend on the information content and 
accuracy of the measurements that have been already made. Hence, an 
optimal observation policy must depend, in addition to the cost of observation, 
upon the accuracy of the prediction for which observations are made. 

In this study, we assume that the purpose of the observation during the time 
interval, observation horizon, [t, t + T] is the prediction of the target dynamics 
x(Tp), T < Tp, where Tp - T is the length of the prediction interval. 
Assuming that x(Tp) is the predicted state, it follows that the accuracy of the 
prediction is defined by 

(30) J(TP) = E{(x(Tp) - x(Tp))
T(x(Tp) - x(Tp))} 

Note that the smaller J{Tp), the more accurate is the prediction. 

3.2   Optimization Approach 

In this study and for simplicity we consider linear dynamics for the target 

(31) x(t) = Ax(t) + £(t)       x(0) = xo 

and given the sensor measurements 

Zj(t) = Vj(t) + Vjityj = 1,2,..., 2M - 1 

Let [t, t + T] the receding horizon observation interval and t + Tp the prediction time. 
Determine the scalar variables 

(32) v1(t),v2{t),...,v2M_1(t);te[t,t + T] 

subject to the constraints 

2M-1 

(33) vj(t)e{0,l}; J2 ^(') = 1 

and the scalar cost functional [3] 

rt+T    2M-1 

J -Jf 
(34) 
where a defines the weighting on the observations cost 

dt+E{(x{t+Tp)-x(t+Tp))
T(x(t+Tp)-x(t+Tp))} 

A useful formalism for computing the estimates is the Kaiman filter. One of the most 
compelling arguments for using this framework is its mathematical clarity. Furthermore 
we believe that: 

•    In the situations we are considering, some prior information is available. 
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We have a well justified basis for the chosen cost functional. 

•    It defines a powerful tool to maximize the speed of convergence of the estimates to 
true values by application of advance knowledge. 

For this and because of the nonlinearities of the models, we consider an extended 
Kaiman filter to derive the estimates. The basic idea of the extended Kaiman filter is to 
relinearize the sensor and dynamic models about each predicted estimate once it has 
been computed. As soon as a new state estimate is made, a new and better reference 
state trajectory is incorporated into the estimation process. Thus allowing the validity 
of the assumption that deviations from the nominal trajectory are small enough to allow 
linear perturbation techniques. Under the assumption of continuous time process, 
continuous time measurements, the extended Kaiman filter cycle is given by the 
following equations: 

(35) 

x(t) = Ax(t) + 
V'-l 

P(t)    J2 Vj{t)Hj{t)R:1 
2M-1 

The error covariance matrix P(t) is the solution of the matrix Riccati differential 
equation 

(36)  P{t) = AP(t) + P{t)AT + Q - P(t) 

where 

2M-1 

£ vMHjmfm) p{t) 

(37) HAt) =   —^ lx=x(t) 

In this continuous time linearization, P cannot be precalculated as it can if we linearize 
with respect to a nominal trajectory. It has to be calculated in real time, since it is 
coupled to the current estimate x(t) through the linearization procedure. 

The predicted estimate x(t + Tp) of the state x(t + Tp) can be computed from the state 
estimate x(t + T) by 

(38) x(t + Tp) = $(t + Tp,t + T)x{t + T) 

$(£, T) defines the transition matrix 

(39) $(f.r) = A$(i,r);$(r,r)=/ 
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It follows that the cost functional to minimize is given by 

J = a 
t+T 2M-1 

3 = 1 

dt+tr [$(* + Tp,t + T)P{t + T)$T{t + Tp,t + T)] 

(40) 
We remark that this is a deterministic optimal control problem. Obviously no 
measurement strategy can be calculated to minimize the previous cost functional 
because of the properties of the solution to the Riccati equation P(£)defined with 
respect to the estimate. Thus one approximation is to derive the extended Kaiman filter 
with respect to a nominal trajectory which still allow to take into account the 
disturbances that will occur in the future. This approach consists of the linearization of 
the system with respect to some nominal trajectory [12]. This nominal trajectory is the 
predicted trajectory. The problem is then to find the optimal observation policy Vj(t) 
that minimizes 

J = a 

(41) 

t+T 2M-1 

E 9i(*)vj(*) 
3=1 

dt+tr [$(* + Tp,t + T)Pn(t + T)$T{t + Tp,t + T)] 

In this study, we consider a receding horizon observation strategy with an optimization 
on each observation interval. We define the update time as the time to initiate a new 
computation of the observation strategy after a certain number of measurements. The 
advantage of this procedure in deriving the observation strategy is that we can deal with 
short term variation of the system. Since the dynamic constraints are naturally 
expressed via a matrix differential equation, one can obtain the solution through the use 
of the matrix minimum principle [2]. 

3.3    Reformulation of the optimization Approach 

Given the deterministic, Riccati differential equation 

Pn(t) = AP„(t) + Pn{t)A
T + Q- Pn(t) 

2M-1 

E v^HnJ^R-'Hnjit) 
3=1 

Pn(t) 

where Hvj(t) is the Jacobian of the observation equation generated along the nominal 
predicted trajectory. Let G(t) denote an n x n costate matrix associated with the 
covariance matrix Pn(t). We define the scalar Hamiltonian function for the posed 
optimization problem as follows 

(42) 

or 

2M-1 

Hh = a J2 9j(%(*) + trPn(t)G
T(t) 

3=1 

DREOTR2001 146 23 



2M-1 

Hh = a ^2 qj(t)Vj(t) + tr [APn{t)G
T(tj\ +tr [Pn[t)A

7GT'(*)] + 

/2M-1 \ 

Pn(t)     52 Vj(t)Hn]R7lHnj    Pn(t)G
T(t) (43) tr [QGT(t)] + tr 

Assuming that v*-(t) characterize the optimal observation strategy, P£(t) the resultant 
state error covariance matrix, and G*(t) the corresponding costate matrix. Then the 
following properties are true 

r*(t\ -     dHh 

G {t) ~ ~dpW) 
= -ATG*{t)-G*(t)A 

+G*(t)P?{t)     J2 v*{t)Hn^{t)R-'Hnj{t) 

/2M-1 

+     52 v){t)H$(t)KrlHnj{t) ] P*n(t)G{t) 

(44) 
p             dHh 
n{)      dG(t) 

= AP*n{t) + P*n{t)A
T + Q- - P*n(t) 

2M-1 

52 Vj{t)HnT{t)RjlHnj{t) pm 

(45) 

under the following boundary conditions: 

•    Att = t:P*(t) = Pt,xn(t)=xt 

•    Att = t + T:G*(t + T) = dHh 

dPn(t+T) 
= $T{t + Tp,t + T)${t + Tp,t + T) 

The equations, stated above, that define the properties of the optimal observation 
strategy present a nonlinear two point boundary value problem. A technique which can 
be used, is the min-H technique [3, 8] 

3.4   Simulations 

A simple scenario has been used to illustrate the behavior of the optimization approach 
and to display the measurements strategy. The scenario is the following: we consider 
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one observer with a collocated radar and ESM basic sensors. The receiver trajectory is 
defined by 

xr(t) = rcos(2nfct) 

yr(t) = rsin(27r/ci) 

(46) zr(t) = cste 

where r is the radius of the circle flown by the receiver, and Tc = l//c is the time it 
takes to complete one flight around the circle. Only one target is in the scene. Initially 
located at (5e2,10e3)m in the inertial frame, the target moves with a constant velocity 
equal to 5ra/s in each direction. The relative target bearing, elevation and, range, with 
respect to the observer, are measured every 0.5 seconds. The receding horizon is 
chosen equal to 50s. The measurement vector y at time U is required to depend on the 
states according to the measurement equations: 

yi = arctan   —j-± f-L 
\Vr{U) -y(U)J 

y       arctaiY zT(U)-z(ti) \ 

V3=  y/MU) - x(ti)f + {yr{ti) - y(U))2 + (zr(fc) - z{U))2 

The radar measurements are defined by 2/2,2/3- The ESM measurements are defined by 
2/1 and the pseudo-sensor measurements by y\, 2/2,2/3 • 

In this simulation, the trajectory of the observer is chosen so as to ensure the 
observability of the target based on the measurements of only one sensor. It follows that 
the observation policy is not directly governed by the observability of the target but by 
the properties of the sensors and the observation interval. The target parameters to 
estimate are collected in a four-dimensional vector x(t) — [x, y, x, y]. For simplicity, 
we assume a known target elevation. 

The simulation results are presented in figures 9, 10, 11, and 12. Figures 9 and 10, 
present the observation policy when varying the measurements noise of both sensors. 
In figure 9, we consider that the ESM and the radar noises have an equal variance for 
the angle measurements a = Idegree. In figure 10, The ESM sensor has 
(j = lOdegree. It is clear from the obtained results that without an additional cost on 
the use of a specific sensor a = 1 and qj(t) = 1, the observation strategy relies on both 
sensors if they have similar resolutions. Otherwise, figure 2, the observation strategy 
will rely on the more precise sensor for a while before using the two sensors. Figures 
11 and 12 present the estimations errors for the described scenarios. It is evident that 
the ESM properties do not affect the quality of the estimates. 

As with all nonlinear two-point boundary value problems, there is no guarantee of 
convergence to a global optimum and depending on the initial guess the algorithm 
would sometimes oscillate between two observation strategies [3]. Despite this, the 
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approach is simple to implement and the obtained results indicate an optimal approach 
at least for the intuitive example considered in the simulations. 

In this study, an algorithm for sub-optimal sensor selection has been proposed and 
simulation results suggest that this technique can be used to manage multiple sensors. 
This algorithm is based on an optimization approach that takes into account the 
properties of the sensors and the objective of the measurements. These parameters are 
integrated in the definition of the cost functional. Results outline that the measurement 
strategy depends on the characteristics of the sensors, the observation interval and the 
prediction interval. Although we use a suboptimal approach, we linearize with respect 
to a predicted nominal trajectory, and we use a min-H algorithm, the approach is simple 
and the obtained results are promising. 
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4.    Conclusion and the way ahead 

This report presentend two comprehensive management cases where the benefits of 
fusion and sensor management are made evident. In the first case, the position of a 
passive sensor is considered as a manageable parameter. In the second case, a 
measurement coordination problem between a passive sensor and an active one is 
presented. 

Simulations suggest that the measurement technique, considered in the first study case, 
presents satisfactory results for the specification of the optimal measurement strategy. 
Even though a suboptimal approach is used, the proposed technique allows for the 
tracking of an object with only a predicted motion. 

In the second case, an algorithm for sub-optimal sensor selection has been proposed 
and simulation results suggest that this technique can be used to manage multiple 
sensors. This algorithm is based on an optimization approach that takes into account 
the properties of the sensors and the objective of the measurements. These parameters 
are integrated in the definition of the cost functional. Results outline that the 
measurement strategy depends on the characteristics of the sensors, the observation 
interval and the prediction interval. Although a suboptimal approach is used, the 
obtained results are promising. 

From this study, it is evident that the prominent role of data fusion and of sensor 
management, as well, is one in which all sensors are exploited to solve state 
estimation/prediction task. In general, however, the lack of standardized performance 
evaluation, system engineering methodologies, architecture paradigms, or 
multi-spectral models of targets and collection systems has been a major impediment to 
integration and adaptive fusion. In short, current developments do not lend themselves 
to objective evaluation, comparison or re-use. Often, the role of data fusion has been 
unduly restricted to a subset of the processes and relevant to particular state estimation 
problems. For example, in military applications such as targeting or tactical 
intelligence, the focus is on estimating and predicting the state of specific types of 
entities in an external environment. In this context, the applicable sensors/sources 
sequences are already defined by the system designer. 

Ultimately, however, such problems are inseparable from problems of navigation, of 
calibrating sensor alignment and performance, and of validating one's library of target 
models. A more powerful realization of the role of data fusion and, indeed, of resource 
management as well, is one in which all sources are exploited to solve all required tasks 
problems. In this realization, the coupling of data fusion tree with resource 
management tree is an interactive operation and the design of both trees will play an 
important part in effective system designs. Developing data fusion functionality with an 
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information processing system can be based on the following four phases as suggested 
by Steinberg [28]: 

1. Operational Architecture Design: System-level problem decomposition; 
assigning the role for data fusion, as well as for other system functions 
(sensors,communications, response resources, human operators, etc.) 

2. System Architecture Design: Design of the data fusion tree by partitioning the 
process among C3 nodes and into processing nodes; specifying interaction with 
sensors/sources, resource management nodes, and information users. 

3. Component Function Design: Design of data fusion nodes, to include specifying 
data inputs/outputs of component functions (alignment, association and 
estimation), allocation to human/automatic processes, and technique selection. 

4. Detailed Design and Development: Pattern application, algorithm tailoring, 
software adaptation and development. 
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